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Some Observations on the
Generalised Conjugate Gradient Method

Stanley C. Eisenstat

DEPARTMENT OF COMPUTER SCIENCE AND
RESEARCH CENTER FOR SCIENTIFIC COMPUTATION
N YALE UNIVERSITY, NEW HAVEN, CT 08520/USA

1. Introduction
Consider the system of linear equations
Az = b ' : 1)

where the coefficient matrix A is large and sparse and has positive definite symmetric part

M = (A+A")/2. n this paper, we compare two methods for solving such systems, the
generalized conjugate gradient method of Concus and Golub (2] and Widlund {10} and Cmg s
method (see [6]) applied to a symmetrically preconditioned auxiliary system.

Notation: (y,z) denotes the Euclidean inner-product y'z and |||} the corresponding norm. If Q
_is a symmetric positive definite matrix, then (y,z)Q denotes the Q-inner product (Qy,z) and |- IIQ

the corresponding norm; Q‘/ ? denotes any square root of @; and Q /2 denotes [Q"/%]™". Let

A = M-N, whence —N = (A—A‘)/? is the skew-symmetric part of A; let K = M 'N; and let

A=Kl

2. The Generalised Conjugate Gradient Method

Concus and Golub [2] and Widlund [10] proposed the Generalized Conjugate Gradient (GCG)
method for use when systems of the form Mz == d are “easy” to solve (much more so than the

original system):
LET 2'¥ BE GIVEN AND SET 20V = 0. - Aeousxoa For
" FOR m = 0 STEP 1 UNTIL “CONVERGENCE" DO  s118 ,:,““ 8
-b— As® ' Unansounced a
™ o= b — A" | teat 1
. SOLVE Mu™ == ™ | Y
Py = (™, o™ .  Distribution/
" m =0 Avnnpbnuy Codes
Wpyyy ™= , i ' : Avail end/or
(14 2 /(Pp1m) m>0 Dist Special
i
|
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z(m-t»l) - z(m—l) + Wy, ["(n) + z("') - z(m--l)l

The cost per iteration is one matrix multiply (by A), one solve of a system of the form Mz = d,
and 2n multiplies. ' ' '

The iterate 2™ can be characterized as the unique element in the affine Krylov subspace
2® + Span{v('), Ko®, K20 K"'"'v(')} '. z(')+$. |
satisfying the Galerkin condition
(2, Ad™—8) =0  forallz€ S,
(see [10]). Moreover, it can be shown that
™=z + zrm(KXz“)—z) , o 2)

where 7_(p) is an even (odd) polynomial of degree at most m for m even (odd) and x_(1) = 1
(see [10]).

The iterate 2™ can also be characterized as the best approximatioﬁ from a certain

>m-dimensional affine subspace:!

arg min  |ly—zll,, m even (= 2k)
(m) y € 2+(1+K)S,,
* argmin  fy-all,  m odd (= 2k+1)
y € 294+(1+K)S,,,,

(see [4]). Equivalently,
=™ —z]| n S Ilp.(sz(')—z)ll » forallp € P,

where P is the space of all real polynomials p_(p) of degree at most m satisfying p,(1) = 1 and
po(=1) = (~1)"™ (see [4]). Taking po(w) = T (A W)/ T,(iA™), where T, (z) is the m™
Chebyshev polynomial, yields the error bound®

(m)_ 2 o_ _ (e
Iz ’"u < R(A)"-O-[—HA)_" §= 3uu ’ e | 3

where R(A) = 47! + VA 1. Tﬁu P.(n) = px__(p) nelds the llequlny

' However, 5 is not the best approximation 1 ¢ from the “nstural® affine Krylov subspace &M S, (see [f).

bo:‘:"bcmnimmnmmdbym.n.hk.ade;ﬂ;Widlud[lqdvnumw

S ST

P




< fe™-ally < AR V-2, foralim 21, )

A-l “ z(wH- _ z"M

which shows that the even ami_’odd #terates muat cxhibit the same asymptolic rate of
convergence (cf. [10}).

3. The CSP Method

For any symmetric positive definite matrix Q, the system (1) is eq\nvaknt to the
symmetncally preconditioned system

Az = [Q7V'AQTV[QY) = [Q7VH) m } -'

If we apply Craig's method (see [6]) to this auxiliary system, which is equivalent to applying the
conjugite gradient method to the normal equations

ﬁﬂ-s f-j‘gr

then the resulting method, Craig’s method applied to the Symmetrically Precondltloned tuxllnry
system (CSP), can be expressed directly in terms of A, z, b, and Q (see [5]):

LET ¢ (= z) BE GIVEN
1 = — Ay®

\ SOLVE QF® = A%
f o9 = 45®

SOLVE Qp®) == p®
' FOR &k = 0 STEP 1 UNTIL "CONVERGENCE”' DO

0\ = _( ,(u) ,(n)!

+ ™, )
N T a, s
A1) e 9 _ g 4g®
~ SoLVE QY = /¥
'(h+|) ’(H-l)
~ =
PP e A1) 4 g g
SOLVE Q'(Hl) - '(Hl) .




The cost per iteration is two matrix multiplies (by A and by A"), two solves of systems of the
form Mz = d, and 5n multiplies, which is essentially the cost of two GCG iterations.

The iterate y‘*) can be characterized as the unique element in the affine Krylov subspace
¥ + (Q7'4") Span(r®, (Q7'AQT'ANYY, .., (QT'AQT'AY '} m 24T,
gatisfying the orthogonality condition
(z,y¥-2z), =0  forallz€ 7,
Thus
¢ = arg min “y'-zuq ,
y €294+7, _
and the standard analysis based on the Chebyshev polynomials yields the error bound

I=slg < f’_,, 1=z}, , ®)
where p = (k+1)/(x~1) and x is the con'dit.ion number of A.
o Q = M, then

2947, = 2 4 (I+K) Span{v¥, K%Y, .., K%} C z(')+(1+K)s;,' |

and

W = argmin |ly-2l,, . (6)
y€2%+7, .

Moreover, since® £ = \/144%, the error bound (5) reduces to (3).

But an even stronger relationship exists between GCG and CSP. If m is even (== 2k), then
7, (p) is even and x,_(1) == 1 so that

#,(8) == 1 = (1+8) pyy_o(8) (1-0) ,

where p,, (p) is an even polynomial of degree at most 24—2. Thes, by equation (2),

" S the number of equations is even, then V/144° may only be aa upper bound on .




2 = 29 _ (14 K)p,,_(KXI-KXz"-2)
= % + (HKlpy, oKW
€ z(')+?; ;

i.e., 2% the best approximation to z from the affine subspace z(')+(I+K)Sw lies in the smaller
affine subspace 2+ 7,. But since ¢ is the best approximation to z from 24T, (see (0)), it -
follows that z®*) = ¢*). Hageman, Luk, and Young [8] and Elman [5] give different proofs that
the two methods are “virtually equivalent.”

The cost of computing f‘) is essentially the same as the cost of computing 2. However,
the odd iterates generated by GCG could be better approximations to z than the even iterates -
(although by at most a constant factor in view of (4)). Since, in addition, GCG requires
somewhat less storage, it is piobably the better method.

4. Two-Level Methods
But what if systems of the form Mz == d are not easy to solve? Golub and Overton [7] have

| proposed a modification® of GCG in which the step

SOLVE Mu!™ = ¢
is replaced by
FIND SOME o™ SATISFYING || Md™ — #™},, < 5 1™,

where 0 < § < 1 is some constant® This is implemented using an inner iterative method to find
o™ on the.m'™ outer iteration. Basing the stopping criterion on the size of the relative residual
has the effect of solving Mv'™ == ™) o increasing absolute accuracy as 2™ converges to .

While they were unable to analyze this two-level scheme, Golub and Overton (7] did analyze
a similar scheme using the two-stage Richardson method (also a three-term recurrence) as the
outer iteration. As one would expect, taking § closer to 0 results in a larger number of inner
iterations per outer iteration and a smaller number of outer iterations; whereas taking § closer to
1 results in » smaller number of inper iterations per outer iteration but s larger sumber of outer
iterations. The same behavior for the two-level GCG method can be seen in the numerical

¢ Dembo, Eisenstat, snd Steihang (3] anslyse s similer modification to Newton's method Mﬁmwd
e . o

* The case § = 0 corresponds to the original GCG method.
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results presented in Section §.

One could take a similar approach with the CSP method. Since M is symmetric and positive
definite, a logical choice for the inner iteration would be the preconditioned conjugate gradient
method with some preconditioning matrix @ (see [1]). But why use a two-level iteration at all
when one can simply take Q == Q (instead of Q == A{)! The numerical results presented in
Section § suggest that this approach is superior.

5. Numerical Results

In this section, we reproduce the numerical experiments reported by Golub and Overton [7]
for the two-level GCG method and present the corresponding results for the CSP method.

Gonsider the elliptic partial differential equation
—Au + (au), + ou, + (bu), + bu, + cu = f |
subject to Dirichlet boundary conditions on the unit square [0,1]X{0,1], where
a(zy) = 57, Kzg) =57, day) = 102°+7)
and Az,y) and the boundary conditions are chosen to make the solution u(z,y) == &7

The five-point centered finite-difference discretization on a rectilinear grid with » interior
mesh points in each direction leads to a system of n® linear equations in which Mu corresponds to
—Au + cu. Thus we use the fast Poisson solver HWSCRT from FISHPACK [9] as a
preconditioning for CSP and for an inner preconditioned conjugate gradient iteration in the two-
level GCG scheme. In each case, the stopping criterion was fIri™} < 107°.

The numbers of (outer) iterations and Poisson solves are given in Table 1 and the number of
Poisson solves is plotted against 6§ in Figure 1. Clearly CSP is a better method than GCG for
this problem, even with the optimal choice of §.

As we have seen, if systems of the form Ms == d are “easy” (0 solve, then GCG ia better than
CSP. If not, then CSP is superior. Ofm,itisnotcloartl_nteitlerlahdilthbd
possible for this class of problems.

6. Conclusions
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Table 1: Number of (Outer) Iterations and Poisson Solves

= 15 n =381

l’ » l'
a8
30
39

-89 -
41
41
42
42
43
45
47
7

3 78 42 84

number of (outer) iterations
number of Poisson solves
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